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Nanomechanical measurements of a superconducting
qubit
M. D. LaHaye1, J. Suh1, P. M. Echternach3, K. C. Schwab2 & M. L. Roukes1

The observation of the quantum states of motion of a macroscopic
mechanical structure remains an open challenge in quantum-state
preparation and measurement. One approach that has received
extensive theoretical attention1–13 is the integration of supercon-
ducting qubits as control and detection elements in nanoelectro-
mechanical systems (NEMS). Here we report measurements of a
NEMS resonator coupled to a superconducting qubit, a Cooper-pair
box. We demonstrate that the coupling results in a dispersive shift
of the nanomechanical frequency that is the mechanical analogue of
the ‘single-atom index effect’14 experienced by electromagnetic
resonators in cavity quantum electrodynamics. The large mag-
nitude of the dispersive interaction allows us to perform NEMS-
based spectroscopy of the superconducting qubit, and enables
observation of Landau–Zener interference effects—a demonstra-
tion of nanomechanical read-out of quantum interference.

Dispersive frequency shifts resulting from the non-resonant inter-
action of a single atom and a macroscopic photon cavity were first
demonstrated over 20 years ago15, and ultimately have enabled beau-
tiful demonstrations of the quantum nature of light and investi-
gations of quantum decoherence14. Some of the most impressive of
such measurements include the non-destructive observation of indi-
vidual microwave photons16 and the preparation of ‘Schrödinger-cat’
states of a single cavity mode17. Similar effects in superconducting
qubits have also been used to detect the Fock states of a coplanar
waveguide resonator18 and the dressed-states of a microwave-driven
Cooper-pair box (CPB) qubit19.

It has been appreciated for some time that a nanomechanical reso-
nator coupled to a superconducting qubit should be formally identical
to cavity quantum electrodynamics (CQED) systems, such as a simple
harmonic oscillator coupled to a two-level quantum system1–13.
Furthermore, because of the large frequency difference between typical
superconducting qubits and NEMS, a coupling regime that is analog-
ous to the dispersive limit of CQED should exist naturally and, in a
similar manner, enable the preparation and measurement of highly
non-classical nanomechanical entangled states6,11–13 and Fock
states2,7–9,11. In this work, as a first step in implementing these more
advanced proposals, we realize dispersive coupling of a CPB qubit and
a nanomechanical resonator, and demonstrate, through measure-
ments of the nanoresonator’s CPB-state-dependent frequency shift,
that the interaction is consistent with the simple picture of a harmonic
oscillator coupled to a two-level quantum system.

Our nanomechanical resonator is the fundamental in-plane
flexural mode of a suspended silicon nitride nanostructure (Fig. 1a).
Its fundamental-mode response can be well described as a damped
simple harmonic oscillator with characteristic resonant frequency
vNR/2p5 58 MHz (Fig. 1c), effective mass M < 4 3 10216 kg, spring
constant K 5 Mv2

NR < 60 N m21 and damping rate k 5 vNR/Q,
where Q ranges between ,30,000 and ,60,000 (Fig. 1c), depending

on the temperature and the resonator’s coupling to the measurement
circuit and the CPB. Similar to the case for an electromagnetic oscil-
lator, a Hamiltonian operator for the nanoresonator can be written in
terms of creation, âa{, and annihilation, âa, operators, yielding
ĤHNR~BvNR(âa{âaz1=2), where B5 h/2p is the reduced Planck con-
stant and the quanta in the mode, of which there are N 5 Æâa{âaæ, are
now mechanical quanta.

A split-junction CPB qubit20, formed from two Josephson tunnel
junctions and a superconducting aluminium loop, is coupled to the
nanoresonator through capacitance, CNR (Fig. 1a). The CPB is well
described by a simple spin-1/2 Hamiltonian21, ĤHCPB~(Eelŝsz{
EJŝsx)=2, where ŝsz and ŝsx are Pauli matrices in the CPB’s charge basis.
The first term in ĤHCPB is the electrostatic energy difference,
Eel 5 8EC(nCPB 1 nNR 2 n 2 1/2), between the nth and (n 1 1)th
charge states, with the charging energy, EC 5 e2/2CS, determined by
the electron charge, e, and the CPB island’s total capacitance,
CS 5 CNR 1 CCPB 1 2CJ, where CJ is the capacitance of each
Josephson junction and CCPB is the capacitance between the CPB
island and a nearby gate electrode. Here nCPB 5 CCPBVCPB/2e and
nNR 5 CNRVNR/2e are the polarization charges (in units of Cooper
pairs) applied by the gate electrode and the nanoresonator, which
are held at potentials VCPB and VNR, respectively (Fig. 1b). The second
term in ĤHCPB is the Josephson energy of the junctions,
EJ 5 EJ0jcos(pW/Wo)j, where W is the externally applied magnetic flux,
Wo 5 h/2e is the flux quantum and EJ0 is the maximum Josephson
energy. From the diagonalization of ĤHCPB (ref. 21), we find the CPB
ground, j2æ, and excited, j1æ, states to be separated by the transition
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, where EC/h and EJ0/h typically are ,10 GHz.

Displacement (by x) of the nanoresonator results in linear modu-
lation of the capacitance between the nanoresonator and CPB,
CNR(x) < CNR(0) 1 (LCNR/Lx)x, which modulates the electrostatic
energy of the CPB through nNR and EC, resulting in the interaction
Hamiltonian2 ĤHint~Bl(âazâa{)ŝsz , where
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p
. For the

parameter values used in this work (Supplementary Information),
equation (1) yields jl/2pj< 0.3–2.3 MHz.

The formal connection to CQED becomes clear when the full
system Hamiltonian, ĤH~ĤHNRzĤHCPBzĤHint, is transformed to the
energy eigenbasis of the qubit:

ĤH~BvNRâa{âaz
DE

2
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(where ŝsz and ŝsx are now Pauli matrices in the CPB’s energy basis).
Equation (2) is similar to a Jaynes–Cummings-type Hamiltonian14.
With the qubit and nanoresonator far-detuned (that is, for
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= jDE{BvNRj), the dispersive coupling limit is realized,
and, to lowest order, the system undergoes a shift in energy that
can be viewed as a CPB-dressed correction to the nanoresonator’s
frequency2:
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For DE . BvNR, DvNR/2p, 0 when the CPB resides in the ground
state (Æŝszæ 5 21) and DvNR/2p. 0 when the CPB fully occupies the
excited state (Æŝszæ 5 1). The dependence of DvNR/2p on Æŝszæ is in
close analogy to the single-atom refractive shift14 that arises in the
dispersive limit of CQED. In our system, DE?BvNR, and it is appro-
priate to think of DvNR/2p as arising solely from the CPB’s state-
dependent polarizability or ‘quantum capacitance’22,23. Thus, for fixed
EJ, jDvNR/2pj is always maximized at CPB charge degeneracy points,
Eel 5 0, where the magnitude of the state-dependent component of
the quantum capacitance is greatest.

We cool the sample to a temperature in the range of Tmc < 100–
140 mK, where the qubit predominantly resides in the ground state
(that is, kBTmc=DE, where kB is Boltzmann’s constant) and the rate
of quasiparticle poisoning in the qubit is minimal24. We then measure
the nanoresonator frequency response using a combination of capa-
citive displacement transduction and radio-frequency reflectome-
try25 (Fig. 1b and Supplementary Information). Figure 1c shows
the frequency response of the nanoresonator amplitude (main panel)
and phase (upper inset) at two values of VCPB for fixed W and
VNR 5 15 V (the largest coupling voltage used in the experiment).
Consistent with equation (3) and the CPB residing in the ground
state, when VCPB is adjusted to a charge degeneracy point, the nanor-
esonator experiences a decrease in frequency, the magnitude of which
is found to be jDvNR/2pj< Bl2/pEJ 5 1,600 Hz. For fixed values of EJ

and Eel, in agreement with equations (1) and (3), jDvNR/2pj is found
to exhibit a quadratic dependence on VNR (Fig. 1c, lower inset) over
the full range of VNR values used in the experiment.

Embedding the nanoresonator in a phase-locked loop, we can
track DvNR/2p while keeping VNR fixed and adiabatically sweeping
VCPB and W (Fig. 2a). The overall dependence of DvNR/2p on VCPB

and W is in excellent qualitative agreement with our model (equation
(3) and Fig. 2b–d). We find that DvNR/2p exhibits the expected
period-2e dependence on VCPB, confirmed for four periods
(Supplementary Information). We also observe that the periodicity
of DvNR/2p in W is in good agreement with one flux quantum Wo

(Supplementary Information), as expected from the W dependence
of EJ. At values of W for which EJ/kB =Tmc (for example trace 1 in
Fig. 2c), the CPB excited state becomes thermally populated in the
vicinity of the charge degeneracy points. As a result, the modulation
depth of DvNR/2p is reduced, which can be accounted for by repla-
cing the qubit expectation in equation (3) with the Boltzmann-
weighted average, Æŝsz æ 5 2tanh(DE/2kBTmc).

We can also manipulate the CPB state Æŝszæ by irradiating the CPB
gate with microwaves that are resonant with the qubit transition, DE,
and perform spectroscopy by monitoring the mechanical frequency
shift, DvNR/2p. With the microwave frequency, vm/2p, held fixed
and the microwave amplitude, Vm, adjusted such that polarization
charge due to the microwave signal (in units of 2e) satisfies
nm 5 CCPBVm/2e= 1, the CPB will oscillate between j1æ and j2æ with
Rabi frequency Vd < 4ECEJnm/BDE when VCPB and W are tuned such
that DE < Bvm. Because the response time of the nanoresonator,
2p/k, is long in comparison with characteristic timescales of the
CPB’s dynamics, measurements of DvNR/2p will reflect the average
qubit occupation, Æŝszæ 5 r1 2 r2, where r1 and r2 are found from
the steady-state solution to the Bloch equations26

rz~1{r{~
1
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and T1 and T2 are the qubit relaxation and dephasing times, respec-

tively. For values of nm large enough that V2
dT1T2? 1, the CPB
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Figure 1 | Device and measurement circuit description, and driven
frequency response of the nanoresonator. a, Colourized scanning electron
micrograph of a device similar to the one measured. The nanoresonator is
formed from low-stress silicon nitride with a thin coating (,80 nm) of
aluminium for applying VNR. The CPB is formed from aluminium during the
same deposition steps as the nanoresonator. It is positioned at a distance
,300 nm from the nanoresonator, yielding the mutual capacitance
CNR 5 43 aF. Adjacent to the CPB is an aluminium electrode for applying
VCPB. Another aluminium electrode is situated ,100 nm from the opposite
side of the nanoresonator, for actuating the nanoresonator and measuring
DvNR/2p. b, Circuit schematic for measuring DvNR/2p using radio-
frequency reflectometry (Supplementary Information). For typical values of
the d.c. voltages VNR and VGNR, where VGNR is applied to the actuation
electrode and used to tune the coupling of the nanoresonator to the
measurement circuit, the excitation signal, VRF(v), drives the nanoresonator
at resonance (v 5 vNR) to 1–10-pm root-mean-squared amplitude or an
effective occupation of ,103–105 quanta. The nanoresonator’s response is
transformed by LT and CT for matching to a cryogenic amplifier. After
amplification at room temperature (,300 K), the signal, Vr(v), is fed to a
radio-frequency lock-in for detection (Supplementary Information). c, The
nanoresonator’s amplitude (main panel) and phase (upper inset) versus
excitation frequency, v, for nCPB biased on and off a charge degeneracy and
EJ/h < 10 GHz. The solid black lines each denote a fit to a harmonic oscillator
response. Lower inset: magnitude of the nanoresonator frequency shift,
|DvNR/2p | (black circles) as a function of V 2

NRfor EJ/h < 11–12 GHz and VCPB

biased at a charge degeneracy. The solid blue line is a fit to |DvNR/
2p | 5 AV2

NR, where A is a proportionality constant.
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becomes saturated, that is, r1 5 r2 5 1/2, and DvNR/2pR 0. Thus,
we can perform spectroscopy of the CPB by fixing vm/2p and nm and
monitoring the nanomechanical frequency shift DvNR/2p while
adiabatically sweeping VCPB and W (Fig. 3a–d). For vm/2p5 10.5–
20 GHz, we observe hyperbolae where DvNR/2pR 0. These trace out
constant-energy contours that are in general agreement with the
expected nCPB–W dependence of the qubit transition, DE (Fig. 3e).
This allows us to extract the values EC/h 5 12.7–13.7 GHz and
EJ0/h < 13 GHz (Supplementary Information), which, through
equation (3), can be used to estimate the coupling strength,
jl/2pj< 0.5–3 MHz over the range VNR 5 2–15 V. Measurements
of the qubit’s linewidth, c/2p, for varying microwave amplitude allow
us to determine that T2 $ 2 ns at charge degeneracy (Supplementary
Information).

At large microwave amplitude Vm (nm >pE2
J =16BvmEC), we

demonstrate that we can utilize the nanomechanical frequency shift,
DvNR/2p, as a probe of quantum coherent interference effects in the
CPB (Fig. 4). These effects arise as a result of Landau–Zener tunnel-
ling27 that can occur between j2æ and j1æ whenever the CPB is swept,
by means of Vm, through the avoided-level crossing at charge degen-
eracy. If T2 is greater than the microwave modulation period, 2p/vm,
then successive Landau–Zener events can interfere, resulting in oscil-
lations in the qubit population, Æŝszæ, as a function of Vm and VCPB.

By monitoringDvNR/2pwhile sweeping VCPB at fixed values of Vm,
we clearly observe quantum interference (Fig. 4a). At the lowest

values of Vm, Landau–Zener tunnelling is exponentially suppressed27,
and we observe a dependence of DvNR/2p on VCPB consistent with
the CPB residing in j2æ. As Vm is increased, we observe that DvNR/2p
oscillates with Vm and VCPB, even changing sign, and becoming
maximally positive at values of Vm and VCPB for which we expect
the occupation of j1æ to be a maximum (the intersections of the
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Figure 2 | Nanoresonator frequency shift as function of CPB parameters
VCPB and W/Wo. a, Measured DvNR/2p for VNR 5 7 V and Tmc < 100 mK.
Data has been post-processed to correct for charge drift and background
fluctuations in vNR/2p (Supplementary Information). Normalization of the
x axis is also discussed in the Supplementary Information. b, Numerically
calculated DvNR/2p as a function of VCPB and W for EC/h 5 14.0 GHz, EJ0/
h 5 13.2 GHz and | l/2p | 5 1.40 MHz. The numerical model uses the full
CPB Hamiltonian (Supplementary Information) to calculate the two lowest
CPB eigenstates, | 1æ and | 2æ. The CPB population, Æŝszæ, is then calculated
assuming the appropriate Boltzmann weighting. To account for low-
frequency charge noise, DvNR/2p from the model is convolved with a
Gaussian of width s(2e) 5 0.10 in nCPB. c, Comparison between data (solid
black lines) and model (dashed blue lines) of selected traces of DvNR/2p
versus VCPB for W biased near minimum EJ (labelled ‘1’) and maximum EJ

(labelled ‘2’) . d, Comparison between data (solid black lines) and model
(dashed blue lines) of DvNR/2p versus W for VCPB biased on a charge
degeneracy (labelled ‘3’).
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Figure 3 | Spectroscopy of the CPB using the nanomechanical frequency
shift as a probe. a–d, DvNR/2p measured as a function of VCPB and W while
applying microwaves of frequency vm/2p5 11.5 GHz (a), 13.5 GHz
(b), 17 GHz (c) and 20 GHz (d). Data has been post-processed to correct for
charge drift and background fluctuations in vNR/2p (Supplementary
Information). Normalization of the x axes is also discussed in the
Supplementary Information. Data was taken for VNR 5 10 V and
Tmc < 140 mK. e, Surface plot of CPB ground-state/excited-state splitting
transition frequency, DE/h, as a function of VCPB and W, with constant
energy contours at the microwave frequencies highlighted.
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contours in Fig. 4a; Supplementary Information). We observe that
the spacing, DVCPB, in gate voltage between adjacent interference
fringes increases linearly with increasing microwave frequency, vm/
2p, as expected27 (Fig. 4b, c). A linear fit of DnCPB to vm/2p (Fig. 4c)
yields EC/h 5 14.9 6 0.6 GHz (s.e.m.) in good agreement with the
value extracted from spectroscopy. Figure 4d shows a cross-section
of DvNR/2p as a function of Vm at charge degeneracy, demonstrating

the expected periodic dependence of the interference maxima. The
primary maxima in DvNR/2p occur for values of Vm that produce a
phase shift of 2pm (where m is an integer) in the CPB’s wavefunction
over one-half cycle of microwave modulation. The resulting average
spacing between peaks, DVm, found from a fit of the data to a series of
Lorentzians, provides an estimated total attenuation of 45 6 2 dB
(s.e.m.) at vm/2p5 6.50 GHz in the CPB gate line, which is in
reasonable agreement with measurements of the attenuation made
before cool-down with the apparatus at ,300 K (,50–54 dB). It
should be possible to extract the qubit dephasing time, T2, from
the width of the interference fringes by using a model that carefully
considers the various timescales in the problem (that is, T1, 2p/vm

and 2p/vNR)27.
For both driven and non-driven CPB cases, it is notable how well

the simple dispersive model (equation (2)) agrees with our observa-
tions. It is not obvious, a priori, that the equations of motion used to
model the interaction between an atom and a photon should also
apply to the interaction between a suspended nanostructure and a
mesoscopic electronic device, in particular because the latter systems
each comprise billions of atoms. Despite this agreement, several out-
standing issues are noteworthy. First, we observe increased damping
of the NEMS upon tuning the CPB to the charge degeneracy point.
Although further explorations are necessary to determine the origin
of this excess energy loss, the fact that it depends on the CPB gate bias,
VCPB, and increases with VNR suggests that it is mediated by the CPB.
Second, we observe additional resonant features near charge degen-
eracy (Fig. 3 and Supplementary Information) whose origins are not
yet understood. These robust features do not appear to be sensitive to
time or background electric field. Furthermore, they also do not
demonstrate a clear dependence on nm, suggesting that mechanisms
such as multiphoton transitions19 and Landau-Zener tunnelling27

may be ruled out.
The dispersive interaction that we have measured, in conjunction

with techniques that have been used to manipulate28 and measure18,28

superconducting qubits, could soon be used to generate and probe
entangled states of nanomechanical systems and qubits. For example,
a superposition of nanoresonator coherent states oscillating at dis-
tinct frequencies dressed by the state of the CPB (that is, vNR,6/
2p5 vNR/2p6DvNR/2p) could be generated by dispersively
coupling the nanoresonator to a CPB that is initially prepared in a
superposition of j2æ and j1æ (refs 12, 13). Coherence of the nano-
mechanical system would manifest itself in periodic reductions in
and revivals of the coherent oscillations of the qubit as the phases of
the two nanoresonator states shift out of alignment and back. This
could then be quantified either through careful measurements of the
qubit’s dephasing spectrum12,18 or using qubit ‘echo’ techniques13,28.

Theoretical investigations of the second approach suggest that
entanglement ‘recoherences’ should be observable in systems similar
to ours using a coupling strength of jl/2pj< 10 MHz (ref. 13). This
would require a modest improvement to the existing sample, which
we anticipate is achievable by engineering a smaller gap electrode; for
example, an order-of-magnitude increase in l is expected using para-
meters similar to those already demonstrated with single-electron
transistors29. It will also be necessary to reduce the effects of quasi-
particle poisoning and other sources of charge noise to achieve CPB
dephasing times T2> 100 ns. This has been accomplished in circuit
QED through careful engineering of the CPB’s parameters and by
using a superconducting cavity for isolation and measurement of the
CPB18,28. Reducing quasiparticle poisoning will have the additional
benefit of enabling operation of the experiment at lower tempera-
tures, where the deleterious effects of the nanoresonator’s thermal
fluctuations on the visibility of qubit revivals should be much weaker.
The calculations in ref. 13 indicate that recoherences should be
observable for nanoresonator thermal occupation factors up to
,20, which corresponds to Tmc= 60 mK for vNR/2p< 60 MHz.
This is readily attainable with our dilution refrigerator.
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Figure 4 | Landau–Zener interferometry using the nanomechanical
frequency shift as a probe. a, Interference fringes in DvNR/2p plotted as a
function of microwave amplitude, Vm, and CPB gate voltage, VCPB, for vm/
2p5 6.50 GHz. Data has been post-processed for charge drift
(Supplementary Information). The colour scale is saturated at DvNR/
2p5 11,000 Hz to enhance contrast of fringes at smaller values of Vm.
b, Cross-sections for constant values of Vm, for vm/2p5 4.00–6.50 GHz,
chosen to coincide with the intersection of the m 5 23 and m 5 24
constant-phase contours, for 2pm advancement in the phase of the CPB
wavefunction (Supplementary Information). The traces at different values
of vm/2p have been offset vertically for clarity, and charge drift between data
sets has been subtracted. c, Linear fit through the origin of the spacing,
DnCPB, between adjacent interference fringes at the intersection of the
m 5 23 and m 5 24 constant-phase contours. DVCPB is determined from a
fit of the interference fringes to a series of Gaussian peaks, and then
converted to DnCPB using the CPB gate capacitance, CCPB 5 17.1 aF. Error
bars are calculated from the Gaussian fit but are smaller than the point size
and the scatter in the data, which is probably due to low-frequency charge
noise. d, Nanomechanical frequency shift versus microwave amplitude for
vm/2p5 6.50 GHz at VCPB 5 23.66 mV, demonstrating the expected
periodic modulation of the interference fringes. Data was taken for
VNR 5 10 V and Tmc < 110 mK.
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We have demonstrated the read-out of a superconducting qubit
using a dispersive interaction with a nanomechanical resonator. This
technique joins cantilever-based magnetic resonance force detec-
tion30 as the only demonstrated mechanical probe techniques of
individual two-level quantum systems. The realistic prospects of
investigating quantum coherence in a nanomechanical resonator
establish the nanoresonator-coupled qubit as a valuable new tool
with which to explore further the frontiers of quantum mechanics.
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